Evaluation of modelled net primary production using MODIS and landsat satellite data fusion
نویسندگان
چکیده
BACKGROUND To improve estimates of net primary production for terrestrial ecosystems of the continental United States, we evaluated a new image fusion technique to incorporate high resolution Landsat land cover data into a modified version of the CASA ecosystem model. The proportion of each Landsat land cover type within each 0.004 degree resolution CASA pixel was used to influence the ecosystem model result by a pure-pixel interpolation method. RESULTS Seventeen Ameriflux tower flux records spread across the country were combined to evaluate monthly NPP estimates from the modified CASA model. Monthly measured NPP data values plotted against the revised CASA model outputs resulted in an overall R2 of 0.72, mainly due to cropland locations where irrigation and crop rotation were not accounted for by the CASA model. When managed and disturbed locations are removed from the validation, the R2 increases to 0.82. CONCLUSIONS The revised CASA model with pure-pixel interpolated vegetation index performed well at tower sites where vegetation was not manipulated or managed and had not been recently disturbed. Tower locations that showed relatively low correlations with CASA-estimated NPP were regularly disturbed by either human or natural forces.
منابع مشابه
Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data
BACKGROUND A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire. RESULTS Net primary production (NPP) predicted from the NASA-CAS...
متن کاملSite-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed t...
متن کاملLearning-Based Sub-Pixel Change Detection Using Coarse Resolution Satellite Imagery
Moderate Resolution Imaging Spectroradiometer (MODIS) data are effective and efficient for monitoring urban dynamics such as urban cover change and thermal anomalies, but the spatial resolution provided by MODIS data is 500 m (for most of its shorter spectral bands), which results in difficulty in detecting subtle spatial variations within a coarse pixel—especially for a fast-growing city. Give...
متن کاملAdvancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm
As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST) retrieved from Thermal Infra-Red (TIR) images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, ...
متن کاملNet Primary production changes affected by climate fluctuations (Case study: Qazvin plain)
Vegetation changes can change the rainfall and temperature cycle and also climate fluctuations, especially temperature and precipitation parameters, have significant effects on vegetation. Climate change causes restriction for plant activities which cause changes in vegetation indices including NPP. Considering that Qazvin plain has been affected by climate fluctuations and drought in recent ye...
متن کامل